Home
Class 11
MATHS
If f(x)=2sin^(-1)sqrt(1-x)+sin^(-1)(2sqr...

If `f(x)=2sin^(-1)sqrt(1-x)+sin^(-1)(2sqrt(x(1-x)))` , where `x in (0,1/2),t h e nf^(prime)(x)` is (a)`2/(sqrt(x(1-x)))` (b) zero (c)`-2/(sqrt(x(1-x)))` (d) `pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x sin^(-1) x)/(sqrt(1 - x^(2)))

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Sove 2 cos^(-1) x = sin^(-1) (2 x sqrt(1 - x^(2)))

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

(sin ^(-1) x )/( sqrt( 1 - x ^(2)) )

lim_(xto0)(sin2x)/(1-sqrt(1-x))

If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x) is equal to

Find tan^(-1)x/(sqrt(a^2-x^2)) in terms of sin^(-1) where x in (0, a)dot

Evaluate: int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^2))dxdot