Home
Class 11
MATHS
If y=sinx+e^x ,t h e n(d^2x)/(dy^2)= ...

If `y=sinx+e^x ,t h e n(d^2x)/(dy^2)=` (a)`(-sinx+e^x)^(-1)` (b)`(sinx-e^x)/((cosx+e^x)^2)` (c) `(sinx-e^x)/((cosx+e^x)^3)` (d) `(sinx+e^x)/((cosx+e^x)^3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x+e^x, then (d^2x)/(dy^2) is (a) e^x (b) - e^x/((1+e^x)^3) (c) -e^x/((1+e^x)^3) (d) (-1)/((1+e^x)^3)

If y=(sinx)^(tanx),t h e n(dy)/(dx)= (a) (sinx)^(tanx)(1+sec^2xlogsinx) (b) tanx(sinx)^(tanx-1)cosx (c) (sinx)^(tanx) (d) sec^2xlogsinx tanx(sinx)^(tanx-1)

int((e^(x)+cosx))/(e^(x)+sinx+2)dx :

"If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

Integrate the functions e^(x)((1+sinx)/(1+cosx))

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)

y=e^(sinx^(2)), find dy/dx :

lim_(xto0)(e^(x)-e^(-x))/sinx

If y=sqrt((1+e^(x))/(1-e^(x))) , show that (dy)/(dx)=e^(x)/((1-e^(x))sqrt(1-e^(2x))) .

If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2