Home
Class 11
MATHS
Let f: R->R satisfying |f(x)|lt=x^2,AAx...

Let `f: R->R` satisfying `|f(x)|lt=x^2,AAx in R` be differentiable at `x=0.` Then find `f^(prime)(0)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

Let f: RvecR be a function satisfying condition f(x+y^3)=f(x)+[f(y)]^3 for all x ,y in Rdot If f^(prime)(0)geq0, find f(10)dot

Let f(x) be differentiable function and g(x) be twice differentiable function. Zeros of f(x),g^(prime)(x) be a , b , respectively, (a

Let f: R->R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y) for all x ,\ y in R . Then, the value of (log)_e(f(4)) is _______

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

A function f: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(y)+2. If differentiable on R-{0}a n df(2)=5,f^(prime)(x)=(f(x)-1)/xdotlambdat h e nlambda= 2^(prime)f(1) b. 3f^(prime)(1) c. 1/2f^(prime)(1) d. f^(prime)(1)