Home
Class 11
MATHS
A function f satisfies the condition f(...

A function `f` satisfies the condition `f(x)=f^(prime)(x)+f^(primeprime)(x)+f^(primeprimeprime)(x)`...... ,where f(x) is a differentiable function indefinitely and dash denotes the order of derivative. If `f(0)=1,t h e nf(x)` is (A)`e^(x/2)` (B) `e^x` (C) `e^(2x)` (D) `e^(4x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

For the function f(x)=x^4(12(log)_e x-7)

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation

Given f^(prime)(1)=1"and"d/(dx)(f(2x))=f^(prime)(x)AAx > 0 .If f^(prime)(x) is differentiable then there exies a number c in (2,4) such that f''(c) equals

A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=(e^x^2)/((x+1)),AAx > -1. If f(0)=5, then f(x) is

Differentiate f(x)=e^(2x) from first principles.