Home
Class 11
MATHS
Let f(x) be a polynomial of degree 3 su...

Let `f(x)` be a polynomial of degree 3 such that `f(3)=1,f^(prime)(3)=-1,f^('')(3)=0,a n df^(''')(3)=12.` Then the value of `f^(prime)(1)` is (a)`12 `(b)` 23` (c) `-13` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f^(prime)(x)=f(x)+int_0^1f(x)dx ,gi v e nf(0)=1, then the value of f((log)_2 2) is (a) 1/(3+e) (b) (5-e)/(3-e) (c) (2+e)/(e-2) (d) none of these

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is

If f(1)=3,f^(prime)(1)=2,f''(1)=4,t h e n f^(-1)(3)= a. 1 b. -1/2 c. -2 d. none of these

Let f(x) be the fourth degree polynomial such that f^(prime)(0)=-6,f(0)=2 and (lim)_(x->1)(f(x))/((x-1)^2)=1 The value of f(2) is a. 3 b. 1 c. 0 d. 2

Let f: RvecR be a one-one onto differentiable function, such that f(2)=1a n df^(prime)(2)=3. The find the value of ((d/(dx)(f^(-1)(x))))_(x=1)

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

If graph of y=f(x) is symmetrical about the point (5,0) and f^(prime)(7)=3, then the value of f^(prime)(3) is__________

Let f(1)=-2a n df^(prime)(x)geq4. 2for1lt=xlt=6. The smallest possible value of f(6) is 9 (b) 12 (c) 15 (d) 19

If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e^x)e^(f(x)) , then y^(prime)(0) is equal to a. 1 b. 2 c. 0 d. none of these