Home
Class 11
MATHS
Prove that ((n + 1)/(2))^(n) gt n!...

Prove that `((n + 1)/(2))^(n) gt n!`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2 le (1+ (1)/(n))^(n) lt 3 for all n in N .

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that ((n^(2))!)/((n!)^(n)) is a natural number for all n in N.

Prove that (1+x)^(n) ge (1+nx) for all natural number n where x gt -1

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)

If matrix a satisfies the equation A^(2)=A^(-1) , then prove that A^(2^(n))=A^(2^((n-1))), n in N .

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .