Home
Class 11
MATHS
Find (dy)/(dx) for y=sin^(-1)(cosx), whe...

Find `(dy)/(dx)` for `y=sin^(-1)(cosx),` where `x in (0,2pi)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=sin(x^2+1)dot

Which of the following is/are true? (dy)/(dx)fory=sin^(-1)(cosx),w h e r ex in (0,pi),i s-1 (dy)/(dx)fory=sin^(-1)(cosx),w h e r ex in (0,2pi),i s1 (dy)/(dx)fory=cos^(-1)(sinx),w h e r ex in (-pi/2,pi/2),i s-1 (dy)/(dx)fory=cos^(-1)(sinx),w h e r ex in (pi/2,(3pi)/2),i s-1

Find (dy)/(dx) where y=(tanx)/(x)

Find (dy)/(dx) if y =e^(x) sin 2x

Find (dy)/(dx)" if "x-y = pi .

Find dy/dx if y = sin x^(@)

Find (dy)/(dx)," if "y+ sin y= cos x .

Find (dy)/(dx) for y=tan^(-1){(1-cosx)/(sinx)},-piltxltpi

find dy/dx if y = (logx)^(sin^(-1)x