Home
Class 11
MATHS
If log(10) (x^(3) + y^(3)) - log(10) (x^...

If `log_(10) (x^(3) + y^(3)) - log_(10) (x^(2) + y^(2) - xy) le 2`, where x,y are positive real number, then find the maximum value of xy.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log)_(10)(x^3+y^3)-(log)_(10)(x^2+y^2-x y)lt=2,w h e r ex ,y are positive real number, then find the maximum value of x ydot

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

Solve log_(10)(x^(2)-2x-2) le 0 .

If u=log((x^(2) + y^(2))/(xy)) , then

If log_(10) x = y ," then find "log_(1000)x^(2)" in terms of " y .

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

If x and y are positive real numbers such that 2log(2y - 3x) = log x + log y," then find the value of " x/y .

If f(x,y) =x^(3) + y^(3) -3xy^(2) , then (del f)/(del x) at x=2, y=3 is

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x