Home
Class 11
MATHS
Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)...

Find `(dy)/(dx)` for `y=tan^(-1)sqrt((a-x)/(a+x)),-a lt x lt a`

Text Solution

Verified by Experts

`y=tan^(-1){sqrt((a-x)/(a+x))}," where " -a lt x lt a`
Substituting `x= a cos theta,` we get
`y=tan^(-1){sqrt((a-a cos theta)/(a+a cos theta))},`
`=tan^(-1){sqrt((1- cos theta)/(1+ cos theta))},`
`=tan^(-1){sqrt(tan^(2)""(theta)/(2))}`
`=tan^(-1)|tan""(theta)/(2)|`
Also, for `-a lt x lt a, -1 lt cos theta lt 1`
`"or "theta in (0,pi) or (theta)/(2) in (0, (pi)/(2))`
`therefore" "y=tan^(-1)|tan""(theta)/(2)|=tan^(-1)(tan""(theta)/(2))`
`=(theta)/(2)=(1)/(2) cos^(-1) ((x)/(a))`
`"or "(dy)/(dx)=-(1)/(2)xx(1)/(sqrt(1-(x^(2))/(a^(2))))(d)/(dx)((x)/(a))=-(1)/(2sqrt(a^(2)-x^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if y = tan^(-1)(x^(2)) .

Find (dy)/(dx) if (tan^(-1)x)^(2) .

Find (dy)/(dx)," if "y= sin^(-1)x +sin^(-1)sqrt(1-x^(2)), 0 lt x lt 1 .

Find (dy)/(dx) for y=((x^2+2)(x+sqrt2))/(sqrt(x+4)(x-7))

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))