Home
Class 11
MATHS
If y=(sinx)^(tanx),t h e n(dy)/(dx)= ...

If `y=(sinx)^(tanx),t h e n(dy)/(dx)=` (a)`(sinx)^(tanx)(1+sec^2xlogsinx)` (b)`tanx(sinx)^(tanx-1)cosx` (c)`(sinx)^(tanx)` (d)`sec^2xlogsinx` `tanx(sinx)^(tanx-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x y+y^2=tanx+y ,t h e n(dy)/(dx)dot

(dy)/(dx)-(tanx)/(1+x)=(1+x)e^(x) secy

If y=(tanx)^((tanx)^((tanx)) ,then find (dy)/(dx) a tx=pi/4

If y=(tanx)/(x) find (dy)/(dx)

Find (dy)/(dx) where y=(tanx)/(x)

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

lim_(xto0)(tanx-sinx)/x^(3)

If y=(log)_(sinx)(tanx),t h e n(((dy)/(dx)))_(pi/4)"is equal to" (a) 4/(log2) (b) -4log2 (c) (-4)/(log2) (d) none of these

Prove that (sinx-cosx+1)/(sinx+cos-1)=secx+tanx .