Home
Class 11
MATHS
Prove that b^2c^2+c^2a^2+a^2b^2> a b cxx...

Prove that `b^2c^2+c^2a^2+a^2b^2> a b cxx(a+b+c)(a ,b ,c >0)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c

Prove that =|1 1 1 a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that 2/(b+c)+2/(c+a)+2/(a+b) 0.

Prove the identities: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]] = (a+b+c)^3

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]] = (a+b+c)^3