Home
Class 11
MATHS
If f(a) = 2, f'(a) = 1, g(a) = -1, g' (a...

If `f(a) = 2, f'(a) = 1, g(a) = -1, g' (a) = 2`. Then `underset(x rarr a)(lim) (g (x) f(a) - g(a) f(x))/(x -a)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =x^(2) -2,g (x) =2x+ 1 then f^(@) g (x)

If g(x) = (x^2 + 2x +3) f(x) and f(0) = 5 and underset( x to 0) (lim) (f(x) -5)/(x) =4 then g'(0) is….......... .

If f(x) =x^(2) -7,g (x) =x-4 find a if g^(@) f (a)= 5

If lim_(xtoa) {(f(x))/(g(x))} exists, then

Let f: (-5,5) rarr R be a differentiable function with f(4) = 1, f^(')(4) = 1, f(0) = -1 and f^(')(0) = 1 , If g(x) = f(2f^(2)(x)+2))^(2) , then - g^(')(0) equals

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2