Home
Class 11
MATHS
If function f satisfies the relation f(x...

If function `f` satisfies the relation `f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x)` for all x ,

Promotional Banner

Similar Questions

Explore conceptually related problems

If function f satisfies the relation f(x)xf^(prime)(-x)=f(-x)xf^(prime)(x)fora l lx ,a n df(0)=3,a n diff(3)=3, then the value of f(-3) is ______________

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

Let f: R->R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f^(prime)(y)+f^(prime)(x)f(y) for all x ,\ y in R . Then, the value of (log)_e(f(4)) is _______

The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2) for all real xdot Given that f(1)=1 and f^(1)=8 , then the value of f^(prime)(1)+f^(1) is 2 b. 4 c. 6 d. 8

A function f satisfies the condition f(x)=f^(prime)(x)+f^(primeprime)(x)+f^(primeprimeprime)(x) ...... ,where f(x) is a differentiable function indefinitely and dash denotes the order of derivative. If f(0)=1,t h e nf(x) is (A) e^(x/2) (B) e^x (C) e^(2x) (D) e^(4x)

If f(x) satisfies the relation f(x)+f(x+4)=f(x+2)+f(x+6) for all x , then prove that f(x) is periodic and find its period.

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let f(x)a n dg(x) be differentiable functions such that f^(prime)(x)g(x)!=f(x)g^(prime)(x) for any real xdot Show that between any two real solution of f(x)=0, there is at least one real solution of g(x)=0.

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.