Home
Class 11
MATHS
Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=...

Prove that `(d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^x)/(e^(2x)+4)dx

(dy)/(dx) = e^(2x-y) + x^(3) e^(-y)

Evaluate int(dx)/(sqrt(1+e^(x)+e^(2x)))

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Show that int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)

Integrate (e^(2x) + e^(-2x) + 2)/(e^x)

If y=sqrt((1+e^(x))/(1-e^(x))) , show that (dy)/(dx)=e^(x)/((1-e^(x))sqrt(1-e^(2x))) .

Evaluate: int(e^x)/(e^(2x)+6e^x+5)dx

Answer the equation: int(e^((x)/(2))-e^(-(x)/(2)))/(e^(x)-e^(-x))dx