Home
Class 11
MATHS
The derivative of y=(1-x)(2-x)....(n-x) ...

The derivative of `y=(1-x)(2-x)....(n-x) ` at ` x=1` is (a)`0` (b) `(-1)(n-1)!` (c)`n !-1` (d) `(-1)^(n-1)(n-1)!`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d^n)/(dx^n)(logx)= (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

The n t h derivative of x e^x vanishes when (a) x=0 (b) x=-1 (c) x=-n (d) x=n

The value of the determinant of n^(t h) order, being given by |x1 11x11 1x | is (x-1)^(n-1)(x+n-1) b. (x-1)^n(x+n-1) c. (1-x)^(-1)(x+n-1) d. none of these

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these

The nth derivative of the function f(x)=1/(1-x^2) [where x in(-1,1) at the point x=0 where n is even is (a) 0 (b) n! (c) n^nC_2 (d) 2^nC_2

If tanx=ntany ,n in R^+, then the maximum value of sec^2(x-y) is equal to (a) ((n+1)^2)/(2n) (b) ((n+1)^2)/n (c) ((n+1)^2)/2 (d) ((n+1)^2)/(4n)

If the expansion in powers of x of the function 1//[(1-a x)(1-b x)] is a a_0+a_1x+a_2x^2+a_3x^3+ ,then coefficient of x^n is (b^n-a^n)/(b-a) b. (a^n-b^n)/(b-a) c. (b^(n+1)-a^(n+1))/(b-a) d. (a^(n+1)-b^(n+1))/(b-a)

Find the sum (x+2)^(n-1)+(x+2)^(n-2)(x+1)^+(x+2)^(n-3)(x+1)^2++(x+1)^(n-1)

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y (c) n y (d) n^2y