Home
Class 11
MATHS
Find the maximum value of (7−x)^4 (2+x)^...

Find the maximum value of `(7−x)^4 (2+x)^5` when x lies between −2 and 7.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of X if sinx +sin7x =sin4x

If x is real, then the value of the expression (x^2+14x+9)/(x^2+2x+3) lies between (a) 5 and 4 (b) 5 and -4 (c) -5 and 4 (d) none of these

Find the approximate value of (5.001), where f(x) = x^(3) – 7x 2 + 15.

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

Find the value of discriminant. x^(2)+7x-1=0

Find the local maximum and local minimum of f(x) = 2x^(3) + 5x^(2) - 4x

Prove that for real values of x ,(a x^2+3x-4)//(3x-4x^2+a) may have any value provided a lies between 1 and 7.

Find the approximate value of f(5. 001), where f(x)=x^3-7x^2+15.

Find the local maximum and minimum values of the following functions 2x^(3)+5x^(2)-4x

For 2 lt x lt 4 find the values of |x|. (ii) For -3 le x le -1 , find the values of |x|. (iii) For -3 le x lt 1, find the values of |x| (iv) For -5 lt x lt 7 find the values of |x-2| (v) For 1 le x le 5 find fthe values of |2x -7|