Home
Class 11
MATHS
Prove that [(x^2+y^2+z^2)/(x+y+z)]^(x+y+...

Prove that `[(x^2+y^2+z^2)/(x+y+z)]^(x+y+z)> x^x y^y z^z >[(x+y+z)/3]^(x+y+z)(x ,y ,z >0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(x+2a,y+2b,z+2c),(x,y,z),(a,b,c)|=0

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)|=(x-y)(y-z)(z-x)

Verify that x ^(3) + y ^(3) + z ^(3) - 3xyz =1/2 (x + y + z) [(x-y)^(2) + (y-z) ^(2) + (z-x) ^(2) ]

Prove that |(x^2,x^2-(y-z)^2,yz),(y^2,y^2-(z-x)^2,zx),(z^2,z^2-(x-y)^2,xy)|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot

The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

By using properties of determinants , show that : {:[( x,x^(2) , yz) ,( y,y^(2) , zx ) ,( z , z^(2) , xy ) ]:} =( x-y)(y-z) (z-x) (xy+yz+ zx)

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Show that |(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3))|=xyz (x-y) (y-z) (z-x)

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n (a) x^2+y^2+z^2+x y z=0 (b) x^2+y^2+z^2+2x y z=0 (c) x^2+y^2+z^2+x y z=1 (d) x^2+y^2+z^2+2x y z=1

Prove that |a x-b y-c z a y+b x c x+a z a y+b x b y-c z-a x b z+c y c x+a z b z+c y c z-a x-b y|=(x^2+y^2+z^2)(a^2+b^2+c^2)(a x+b y+c z)dot