Home
Class 11
MATHS
Let u(x) and v(x) be differentiable func...

Let `u(x) and v(x)` be differentiable functions such that `(u(x))/(v(x))= 7.` If (u'(x)/(v'(x))= p and ((u'(x))/(v'(x)))' = q,` then `(p+q)/(p-q)` has the value of to `(a) `1` (b) `0` (c) `7` (d) `-7`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^(3)= u +iv , then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2)) .

If P = (x^(2) -36)/(x^(2) -49) and Q= (x+6)/(x+7) find the value of (P)/(Q)

The integrating factor of the differential equation (dy)/(dx)+P(x)y=Q(x) is x, then P(x)

If u = cos ^(-1) ((x)/(y)) prove that x (del u)/(delx) + y (del u)/(dely)=0.

If u = log ((x ^(2) y + y ^(2) x)/(xy)) then x (del u)/( del x) + y (del u)/(del y)=

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is

If u = tan^(-1)"" (sqrt ( 1+x^2)-1)/(x) and v = tan^(-1) x , find (du)/(dv)

int((x^2+1))/((x+1)^2)dxi se q u a lto ((x-1)/(x+1))e^x+c (b) e^x((x+1)/(x-1))+c e^x(x+1)(x-1)+c (d) none of these

Evaluate: int(dx)/((x-p)sqrt((x-p)(x-q)))