Home
Class 11
MATHS
fn(x)=e^(f(n-1)(x)) for all n in Na n ...

`f_n(x)=e^(f_(n-1)(x))` for all `n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)}` is (a)`(f_n(x)d)/(dx){f_(n-1)(x)}` (b) `f_n(x)f_(n-1)(x)` (c)`f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x)` (d)none of these

A

`f_(n)(x)(d)/(dx){f_(n-1)(x)}`

B

`f_(n)(x)f_(n-1)(x)`

C

`f_(n)(x)f_(n-1)(x)...f_(2)(x).f_(1)(x)`

D

None of these

Text Solution

Verified by Experts

`(d)/(dx){f_(n)(x)}=(d)/(dx){e^(f_(n-1)(x))}`
`=e^(f_(n-1)(x))(d)/(dx){f_(n-1)(x)}=f_(n)(x)(d)/(dx){f_(n-1)(x)}`
`f_(n)(x).(d)/(dx){e^(f_(n-2)(x))}=f_(n)(x).e^(f_(n-2)(x))(d)/(dx){f_(n-2)(x)}`
`=f_(n)(x)f_(n-1)(x)(d)/(dx){f_(n-2)(x)}` ...
`=f_(n)(x)f_(n-1)(x)...f_(2)(x)(d)/(dx){f_(1)(x)}`
`=f_(n)(x)f_(n-1)(x)...f_(2)(x)(d)/(dx){e^(f_(0)(x))}`
`=f_(n)(x)f_(n-1)(x)...f_(2)(x)e^(f_(0)(x))(d)/(dx){f_(0)(x)}`
`"Use "e^(f_(0)(x))=f_(1)(x)and f_(0)(x)=x`
Promotional Banner

Similar Questions

Explore conceptually related problems

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

Using the first principle, prove that: d/(dx)(f(x)g(x))=f(x)d/(dx)(g(x))+g(x)d/(dx)(f(x))

A function f: RvecR satisfies the equation f(x)f(y)-f(x y)=x+yAAx ,y in Ra n df(1)>0 , then f(x)f^(-1)(x)=x^2-4 b. f(x)f^(-1)(x)=x^2-6 c. f(x)f^(-1)(x)=x^2-1 d. none of these

Let f(x)=(x-1)(x-2)(x-3)(x-n),n in N ,a n df(n)=5040. Then the value of n is________

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

If f(x)=lim_(n->oo)n(x^(1/n)-1),t h e nforx >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

Suppose f(x)=(d)/(dx)(e^(x)+2) . Find int(f(x)-sinx)dx .