Home
Class 11
MATHS
Let x1, x2,...,xn be positive real numbe...

Let `x_1, x_2,...,x_n` be positive real numbers and we define `S=x_1+x_2+.....+x_ndot` Prove that `(1+x_1)(1+x_2)...(1+x_n)lt=1+S+(S^2)/(2!)+(S^3)/(3!)+...+(S^n)/(n !)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_1 , x_2, ..., x_n are any real numbers and n is anypositive integer, then

If x and y are positive real numbers and m, n are any positive integers, then Prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt =1/4

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

Show that x^(n) =1 + n(1 -1/x) + (n(n+1))/1.2 (1 -1/x)^(2) + ...

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+. . .....(n+1)terms = 0

Find the coefficient of x^n in (1+x/(1!)+(x^2)/(2!)++(x^n)/(n !))^2 .

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s

Coefficient of x^(6) in (1+x)(1+x^(2))^(2)(1+x^(3))^(3)…(1+x^(n))^(n) is

Prove that for any two numbers x_1a n dx_2dot (e^(2x_1)+e^(x_2))/3> e^((2x_1+x_2)/3)