Home
Class 11
MATHS
For xgeq0 , the smallest value of the fu...

For `xgeq0` , the smallest value of the function `f(x)=(4x^2+8x+13)/(6(1+x)),` is

Promotional Banner

Similar Questions

Explore conceptually related problems

find the domain of the function f(x) = (x^2 +2x + 1)/( x^2 -8x + 12 )

Find the domain of the function f(x) =(x^(2)+2x+1)/(x^(2)-8x+12)

Calculate the greatest and least values of the function f(x)=(x^4)/(x^8+2x^6-4x^4+8x^2+16)

Find the domain of the function : f(x)=sqrt(4^x+8^((2/3)(x-2))-13-2^(2(x-1)))

Find the inverse of the function: f(x)={x^3-1, ,x<2 x^2+3,xgeq2

The value of c in Lagrange's mean value theorem for the function f(x) = x^(2) + 2x -1 in (0, 1) is

The maximum value of the function f(x)=((1+x)^(0. 6))/(1+x^(0. 6)) in the interval [0,1] is 2^(0. 4) (b) 2^(-0. 4) 1 (d) 2^(0. 6)

Prove:the function f(x)=(x^2+4x+30)/(x^2-8x+18) is not one-to-one.

Find the smallest integral value of x satisfying (x-2)^(x^2-6x+8))>1

The period of the function f(x) = | sin 2x | + | cos 8x | is