Home
Class 11
MATHS
If a ,b ,c in R^+ , then the minimum v...

If `a ,b ,c in R^+` , then the minimum value of `a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)` is equal to (a)`a b c` (b)`2a b c` (c)`3a b c` (d)`6a b c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c,in R^(+) , such that a+b+c=18 , then the maximum value of a^2,b^3,c^4 is equal to

In triangle ABC , a (b^2 +c^2 ) cos A + b (c^2 +a^2 ) cos B + c(a^2 +b^2 ) cos C is equal to

If a , b and c are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a ,b ,c ,d in R^+-{1}, then the minimum value of (log)_d a+(log)_b d+(log)_a c+(log)_c b is (a) 4 (b) 2 (c) 1 (d)none of these

Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the minimum value of a+b+c is (a) 1 (b) 3 (c) 5 (d) 9

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

Prove that b^2c^2+c^2a^2+a^2b^2> a b cxx(a+b+c)(a ,b ,c >0) .

If a ,b ,a n dc are in H.P., then th value of ((a c+a b-b c)(a b+b c-a c))/((a b c)^2) is ((a+c)(3a-c))/(4a^2c^2) b. 2/(b c)-1/(b^2) c. 2/(b c)-1/(a^2) d. ((a-c)(3a+c))/(4a^2c^2)