Home
Class 11
MATHS
Let an be the nth term of a G.P. of posi...

Let `a_n` be the nth term of a G.P. of positive numbers. Let `sum_(n=1)^(100)a_(2n)=alphaa n dsum_(n=1)^(100)a_(2n-1)=beta` , such that `alpha!=beta` , then the common ratio is `alpha//beta` b. `beta//alpha` c. `sqrt(alpha//beta)` d. `sqrt(beta//alpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_(n) be the n^(th) term of a G.P of positive integers. Let sum_(n = 1)^(100) a _(2n) = alpha and sum_(n = 1)^(100) a_(2n +1) = beta such that alpha != beta . Then the common ratio is

Let alpha,beta are the roots of x^2+b x+1=0. Then find the equation whose roots are - (alpha+1//beta)and-(beta+1//alpha) .

Write each of the following expressions in terms of alpha+beta and alphabeta . (1)/(alpha^(2)beta)+(1)/(beta^(2)alpha)

If sin(120^0-alpha)=sin(120^0-beta),0

alpha beta x ^(alpha-1) e^(-beta x ^(alpha))

If alpha ne beta" but "alpha^(2)=5 alpha-3" and "beta^(2)= 5 beta-3 then the equation whose roots are (alpha)/(beta)" and "(beta)/(alpha) is

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals

If alpha and beta are the roots of the equation x^(2)-ax+b=0 ,find Q (a)(alpha)/(beta)+(beta)/(alpha)

If 2 sin 2alpha=tan beta,alpha,beta, in((pi)/(2),pi) , then the value of alpha+beta is