Home
Class 11
MATHS
If 1^2+2^2+3^2+....+2003^2=(2003)(4007)(...

If `1^2+2^2+3^2+....+2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2001)+....+(2003)(1) = (2003)(334)(x), then x` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^3-x^2+100x+2002 ,t h e n f(1000)>f(1001) f(1/(2000))>f(1/(2001)) f(x-1)>f(x-2) f(2x-3)>f(2x)

(3x + 1)/( 2x^(2) - 2 x + 3 )

sin^(-1) (3 x/2) + cos^(-1 ) ( 3 x/2)= ……..

sin^(-1) (3 "" (x)/(2)) + cos^(-1) (3 "" (x)/(2)) = ………..

If (1 -2x)/(3 + 2x - x^(2)) = (A)/(3 -x ) + (B)/(x + 1) ,then the value of A + B is

If (1-2x)/(3+2x-x^(2))=(A)/(3-x)+(B)/(x+1) then the value of A+B is

If (1-2x)/(3+2x-x^2)=(A)/(3-x)+(B)/(x+1) then the value of A+B is

int((x+1)^(2)x)/(x(x^(2)+1)) is equal to