Home
Class 11
MATHS
statement 1: Let p1,p2,...,pn and x be ...

statement 1: Let `p_1,p_2,...,p_n and x ` be distinct real number such that `(sum_(r=1)^(n-1)p_r^2)x^2+2(sum_(r=1)^(n-1)p_r p_(r+1))x+sum_(r=2)^n p_r^2 lt=0` then `p_1,p_2,...,p_n` are in G.P. and when `a_1^2+a_2^2+a_3^2+...+a_n^2=0,a_1=a_2=a_3=...=a_n=0` Statement 2 : If `p_2/p_1=p_3/p_2=....=p_n/p_(n-1),` then `p_1,p_2,...,p_n` are in G.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to

If p+q=1, then show that sum_(r=0)^n r^2^n C_rp^r q^(n-r)=n p q+n^2p^2dot

Prove ""^(n)P_(r)=""^(n-1)P_(r) +r. ""^(n-1)P_(r-1)

If sum_(r=0)^(n) (pr+2).""^(n)C_(r)=(25)(64) where n, p in N , then

If a_1,a_2,….a_n are in H.P then (a_1)/(a_2+,a_3,…,a_n),(a_2)/(a_1+a_3+….+a_n),…,(a_n)/(a_1+a_2+….+a_(n-1)) are in

If a_1,a_2,a_3…a_n are in H.P and f(k)=(Sigma_(r=1)^(n) a_r)-a_k then a_1/f(1),a_2/f(3),….,a_n/f(n) are in

Prove that ""^(n-1)P_r+r^(n-1)p_r-1=^nP_r dot""

If a_1,a_2,a_3,... are in A.P. and a_i>0 for each i, then sum_(i=1)^n n/(a_(i+1)^(2/3)+a_(i+1)^(1/3)a_i^(1/3)+a_i^(2/3)) is equal to

If ""^(n)P_(r)=k xx ""^(n-1)P_(r-1) what is k:

If sum_(r=1)^n r(r+1)(2r+3)=a n^4+b n^3+c n^2+d n+e , then a. a-b=d-c b. e=0 c. a , b-2//3,c-1 are in A.P. d. c/a is an integer