Home
Class 11
MATHS
Five persons entered the lift cabin on t...

Five persons entered the lift cabin on the ground floor of an eight-floor house. Suppose that each of them, independently and with equal probability, can leave the cabin at any floor beginning with the first. Find out the probability of all five persons leaving at different floors.

Promotional Banner

Similar Questions

Explore conceptually related problems

Five persons entered the lift cabin on the ground floor of an 8-floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first. Find out the probability of all five persons leaving at different floors.

Two boys A and B find the jumble of n ropes lying on the floor. Each takes hold of one loose end randomly. If the probability that they are both holding the same rope is 1/(101) then the number of ropes is equal to

In a three-storey building, there are four rooms on the ground floor, two on the first and two on the second floor. If the rooms are to be allotted to six persons, one person occupying one room only, the number of ways in which this can be done so that no floor remains empty is a. "^8P_6-2(6!) b. "^8P_6 c. "^8P_5(6!) d. none of these

(i) A kabaddi coach has 14 players ready to play. How many different teams of 7 players could the coach put on the court? (ii) There are 15 persons in a party and if , each 2 of them shakes hands wit each with each other. How many handshakes happen in the party? (iii) How many chords can be drawn through 20 points on a circle? (iv) In a parking lot one hunderd, one year old cars are parked. Out of them five are to be chosen at random for to check its pollution devices. How many different set of five cars are possible? (v) How many ways can a team of 3 boys, 2 girls and 1 transgender be selected from 5 boys, 4 girls and 2 transgender?

There are some experiment in which the outcomes cannot be identified discretely. For example, an ellipse of eccentricity 2sqrt(2)//3 is inscribed in a circle and a point within the circle is chosen at random. Now, we want to find the probability that this point lies outside the ellipse. Then, the point must lie in the shaded region shown in Figure. Let the radius of the circle be a and length of minor axis of the ellipse be 2b. Given that 1 - (b^(2))/(a^(2)) = (8)/(9) or (b^(2))/(a^(2)) = (1)/(9) Then, the area of circle serves as sample space and area of the shaded region represents the area for favorable cases. Then, required probability is p= ("Area of shaded region")/("Area of circle") =(pia^(2) - piab)/(pia^(2)) = 1 - (b)/(a) = 1 - (1)/(3) = (2)/(3) Now, answer the following questions. Two persons A and B agree to meet at a place between 5 and 6 pm. The first one to arrive waits for 20 min and then leave. If the time of their arrival be independant and at random, then the probability that A and B meet is