Home
Class 11
MATHS
Let a(1),a(2),…,a(n) be real numbers suc...

Let `a_(1),a_(2),…,a_(n)` be real numbers such that
`sqrt(a_(1))+sqrt(a_(2)-1)+sqrt(a_(3)-2)+…+sqrt(a_(n)-(n-1))`
`=1/2(a_(1)+a_(2)+….+a_(n))-(n(n-3))/4`
Then the value of find the value of `sum_(i=1)^(100)a_(i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1)=-1 and a_(n)=(a_(n-1))/(n+2) then the value of a_(4) is ____.

If A_(1), A_(2),..,A_(n) are any n events, then

If a_(1) = 4 and a_(n + 1) = a_(n) + 4n for n gt= 1 , then the value of a_(100) is

Let (1 + x)^(n) = 1 + a_(1)x + a_(2)x^(2) + ... + a_(n)x^(n) . If a_(1),a_(2) and a_(3) are in A.P., then the value of n is

Let a_(1),a_(2),a_(3),….,a_(4001) is an A.P. such that (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+...+(1)/(a_(4000)a_(4001))=10 a_(2)+a_(400)=50 . Then |a_(1)-a_(4001)| is equal to

If a_(1), a_(2),………, a_(50) are in G.P, then (a_(1) - a_(3) + a_(5) - ....... + a_(49))/(a_(2) - a_(4) + a_(6) - ....... + a_(50)) =

Let a_(1), a_(2),…,a_(n) be fixed real numbers and define a function f(x)=(x-a_(1))(x-a_(2))…(x-a_(n)). What is lim_(xrarra_(1))f(x) ? For some a ne a_(1), a_(2), …..,a_(n) , compute lim_(xrarra)(f(x) .

If the sequence a_(1),a_(2),a_(3),…,a_(n) is an A.P., then prove that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+…+a_(2n-1)^(2)-a_(2n)^(2)=n/(2n-1)(a_(1)^(2)-a_(2n)^(2))

Let a_(1), a_(2), a_(3),...,a_(49) be in AP such that sum_(k=0)^(12) a_(4k +1) = 416 and a_(9) + a_(43) = 66 . If a_(1)^(2) + a_(2)^(2) + ...+ a_(17)^(2) = 140m , then m is equal to