Home
Class 11
MATHS
If a1, a2, an are in A.P. with common ...

If `a_1, a_2, a_n` are in A.P. with common difference `d!=0` , then the sum of the series `sind[seca_1seca_2+(sec)_2seca_3+....+s e ca_(n-1)(sec)_n]` is : a.`cos e ca_n-cos e ca` b. `cota_n-cota` c. `s e ca_n-s e ca` d. `t a na_n-t a na`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), ……., a_(n) are in A.P. with common differece d != 0 , then (sin d) [sec a_(1) sec a_(2) + sec a_(2) sec a_(3) + .... + sec a_(n - 1) sec a_(n)] is equal to

let a_1,a_2,...a_n be in A.P. wth common difference pi/6 . if seca_1seca_2+seca_2seca_3+....seca_(n-1)seca_n = k(tana_n-tana_1) Find the value of k

In an A.P. with first term 'a' and common difference 'd' t_(2n) - t_(n) is : (where t_(n) " is the " n^(th) term )

If S_(n) denotes the sum of n terms of an AP whose common difference is d, the value of S_(n)-2S_(n-1)+S_(n-2) is

If a_1,a_2,a_3 ,….""a_n is an aritmetic progression with common difference d. prove that tan [ tan ^(-1) ((d)/( 1+ a_1a_2))+ tan^(-1) ((d)/(1+a_2a_3))+…+((d)/(1+a_n a_( n-1))) ] = (a_n -a_1)/(1 +a_1 a_n )

If a_1,a_2, .....,a_n are positive real numbers whose product is a fixed number c , then the minimum value of a_1+a_2+.........+a_(n-1)+2a_n is a. a_(n-1)+2a_n b. (n+1)c^(1//n) c. 2n c^(1//n) d. (n)(2c)^(1//n)

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

If S_n=n P+(n(n-1))/2Q ,w h e r eS_n denotes the sum of the first n terms of an A.P., then find the common difference.