Home
Class 11
MATHS
In the quadratic ax^2+bx+c=0,D=b^2-4ac a...

In the quadratic `ax^2+bx+c=0,D=b^2-4ac and alpha+beta,alpha^2+beta^2,alpha^3+beta^3,` are in G.P , where `alpha,beta` are the roots of `ax^2+bx+c,` then (a) `Delta != 0` (b) `bDelta = 0` (c) cDelta = 0` (d) `Delta = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta be the roots of the quadratic equation a x^2+b x+c=0and Delta =b^2-4ac cdotIfalpha+beta,alpha^2+beta^2,alpha^3+beta^3 are in G.P. Then a. Delta!=0 b. bDelta=0 c. cDelta =0 d. Delta =0

Let f(x) = ax^(2) + bx + c, a != 0 and Delta = b^(2) - 4ac . If alpha + beta, alpha^(2) + beta^(2) and alpha^(3) + beta^(3) are in GP, then

If alpha and beta are thr roots of the equation ax^(2) + bx + c = 0 then ( alpha + beta )^(2) is ……… .

If alpha" and "beta are the roots of x^(2)-ax+b^(2)=0 , then alpha^(2)+beta^(2) is equal to

If alpha and beta are the roots of the equation ax^(2)+bx+c=0 then (alpha+beta)^(2) is …………..

If alpha and beta are roots of x^(2)+8x+10=0 then (alpha)/(beta)+(beta)/(alpha) is :

If the equation ax^2 + bx + c = 0 ( a gt 0) has two roots alpha and beta such that alpha 2 , then

If |{:(a,b,a alpha+b),(b,c,b alpha+c),(a alpha +b,b alpha+c,0):}|=0 Prove that a,b,c are in G.P. or alpha is a root of ax^2 + 2bx + c=0