Home
Class 11
MATHS
The sum of i-2-3i+4 up to 100 terms, whe...

The sum of `i-2-3i+4` up to 100 terms, where `i=sqrt(-1)` is a. `50(1-i)` b. `25 i` c. `25(1+i)` d. `100(1-i)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

(1+3i)(1-3i)

Prove that z=i^i, where i=sqrt-1, is purely real.

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

i^(2)+i^(4)+i^(6)+"…………up to "(2k+1) terms, k in N is

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=i log(2-sqrt3), then cosz = a.-1 b. (-1)/2 c. 1 d. 2

The value of sum_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)= -1 , is equal to

The value of i-i^(2)+i^(3)-i^(4)+"……."-i^(100) is equal to

if A=[[i,0] , [0,i]] where i=sqrt(-1) and x epsilon N then A^(4x) equals to: