Home
Class 11
MATHS
For the series, S=1+1/((1+3))(1+2)^2+1/(...

For the series, `S=1+1/((1+3))(1+2)^2+1/((1+3+5))(1+2+3)^2+1/((1+3+5+7)) (1+2+3+4)^2` +...

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

The sum up to 10 terms of the series (3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) + 2^(2) + 3^(2)) + ....

The sum of the first 9 terms of the series 1^3/1 + (1^3 + 2^3)/(1+3) + (1^3 + 2^3 +3^3)/(1 + 3 +5) ..... is :

(1)/(2(3x+4y))=(1)/(5(2x-3y))=(1)/(4),

2[1/2 + 1/(3.2^(3)) + 1/(5.2^(5)) + …] is :

Find the sum up to the 17^(th) term of the series (1^3)/(1) + (1^3 + 2^3)/(1+3) + (1^3 + 2^3 + 3^3)/(1+3+5)+ ….

Find the sum upto the 17^(th) term of the series 1^(3)/1 + (1^(3)+2^(3))/(1+3) + (1^(3)+2^(3)+3^(3))/(1+3+5)+...

If the surm of the first ten terms of the series, (1 3/5)^2+(2 2/5)^2+(3 1/5)^2+4^2+(4 4/5)^2+........ , is 16/5m ,then m is equal to

Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo