Home
Class 11
MATHS
Let A(n) = ((3)/(4)) - ((3)/(4))^(2) + (...

Let `A_(n) = ((3)/(4)) - ((3)/(4))^(2) + ((3)/(4))^(3) + ...+ (-1)^(n-1) ((3)/(4))^(n)`
`B_(n) =1 -A_(n)`. Find a least odd natural number `n_(0)`, so that `B_(n) gt A_(n), AA n ge n_(0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_n=3/4-(3/4)^2+(3/4)^3+...(-1)^(n-1)(3/4)^n and b_n=1-a_n , then find the minimum natural number n, such that b_n>a_n

For and odd integer n ge 1, n^(3) - (n - 1)^(3) + …… + (- 1)^(n-1) 1^(3)

Let (1 + x)^(n) = 1 + a_(1)x + a_(2)x^(2) + ... + a_(n)x^(n) . If a_(1),a_(2) and a_(3) are in A.P., then the value of n is

If a_(1) = 4 and a_(n + 1) = a_(n) + 4n for n gt= 1 , then the value of a_(100) is

If A_(n) is the area bounded by y=x and y=x^(n), n in N, then A_(2).A_(3)…A_(n)=

If A_(1), A_(2),..,A_(n) are any n events, then

If a_(n) = (n - 3)/4 , then find a_(11),a_(15) and hence find a_(15)/a_(11) .

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If (1+x^(2))^(2)(1+x)^(n) =a_(0) + a_(1)x + a_(2)x^(2) + …+ x^(n+4) and if a_(0), a_(1), a_(2) are in A.P., then n is:

If a_(1), a_(2) …… a_(n) = n a_(n - 1) , for all positive integer n gt= 2 , then a_(5) is equal to