Home
Class 12
MATHS
Find the minimum value of (x1-x2)^2+((x...

Find the minimum value of `(x_1-x_2)^2+((x_1^2)/20-sqrt((17-x_2)(x_2-13)))^2` where `x_1 in R^+,x_2 in (13,17)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of |x|+|x+1/2|+|x-3|+|x-5/2|dot

The maximum value of y = sqrt((x-3)^(2)+(x^(2)-2)^(2))-sqrt(x^(2)-(x^(2)-1)^(2)) is

Evaluate: int_0^1(2-x^2)/((1+x)sqrt(1-x^2))dx

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))

For all real values of x, the minimum value of (1-x+x^(2))/(1+x+x^(2)) is

Expand (x^(2)+sqrt(1-x^(2)))^(5)+(x^(2)-sqrt(1-x^(2)))^(5)

Find the least value of ((6x^2-22 x+21))/((5x^2-18+17)) for real xdot

Evaluate int(dx)/((1+x^(2))(sqrt(1-x^(2)))) .