Home
Class 12
MATHS
Consider the function f(x)=8x^2-7x+5 on ...

Consider the function `f(x)=8x^2-7x+5` on the interval `[-6,6]dot` Find the value of `c` that satisfies the conclusion of Lagranges mean value theorem.

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = sqrtx, a = 1, b = 4 find c in Lagrange's mean value theorm:

Verify Mean Value Theorem for the function f(x)= x^(2) in the interval [2, 4].

consider the real function of f(x ) =(x^2 +2x +3)/( x^2 -8x +12) find the value of x if f (x ) =1

consider the real function of f(x ) =(x^2 +2x +3)/( x^2 -8x +12) find the domain of f .

Find c of Lagranges mean value theorem for the function f(x)=3x^2+5x+7 in the interval [1,3]dot

In the expansion of (1+x)^n , 7th and 8th terms are equal. Find the value of (7//x+6)^2 .

Find the values in the interval (1,2) of the mean value theorem satisfied by the function f(x)=x-x^(2) "for" 1 le x le 2 .

Find the domain of the function f(x)=(x^2-6x+5)/(x^2-5x+6) .

Verify Mean Value Theorem, if f(x) = x^(2)-4x-3 in the interval [a,b], where a=1 and b= 4.

If the function f(x)=x^3-6x^2+a x+b defined on [1,3] satisfies Rolles theorem for c=(2sqrt(3)+1)/(sqrt(3) then find the value of aa n db