Home
Class 12
MATHS
Let f(x)a n dg(x) be differentiable func...

Let `f(x)a n dg(x)` be differentiable function in `(a , b),` continuous at `aa n db ,a n dg(x)!=0` in `[a , b]dot` Then prove that `(g(a)f(b)-f(a)g(b))/(g(c)f^(prime)(c)-f(c)g^(prime)(c))=((b-a)g(a)g(b))/((g(c))^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)a n dg(x) be two differentiable functions in Ra n df(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot

If f(x)a n dg(x) are continuous functions in [a , b] and are differentiable in (a , b) then prove that there exists at least one c in (a , b) for which. |f(a)f(b)g(a)g(b)|=(b-a)|f(a)f^(prime)(c)g(a)g^(prime)(c)|,w h e r ea

Let f be continuous on [a , b],a >0,a n d differentiable on (a , b)dot Prove that there exists c in (a , b) such that (bf(a)-af(b))/(b-a)=f(c)-cf^(prime)(c)

Statement 1: If both functions f(t)a n dg(t) are continuous on the closed interval [1,b], differentiable on the open interval (a,b) and g^(prime)(t) is not zero on that open interval, then there exists some c in (a , b) such that (f^(prime)(c))/(g^(prime)(c))=(f(b)-f(a))/(g(b)-g(a)) Statement 2: If f(t)a n dg(t) are continuou and differentiable in [a, b], then there exists some c in (a,b) such that f^(prime)(c)=(f(b)-f(a))/(b-a)a n dg^(prime)(c)(g(b)-g(a))/(b-a) from Lagranes mean value theorem.

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g^(prime)(x)>0a n df^(prime)(x) g(f(x-1)) f(g(x+1))>f(g(x-1)) g(f(x+1))

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0fora l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d)none of these

Let f(x)a n dg(x) be differentiable for 0lt=xlt=2 such that f(0)=2,g(0)=1,a n df(2)=8. Let there exist a real number c in [0,2] such that f^(prime)(c)=3g^(prime)(c)dot Then find the value of g(2)dot

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

Let g: RvecR be a differentiable function satisfying g(x)=g(y)g(x-y)AAx , y in R and g^(prime)(0)=aa n dg^(prime)(3)=bdot Then find the value of g^(prime)(-3)dot