Home
Class 12
MATHS
Let f(x0 be a non-constant thrice differ...

Let `f(x0` be a non-constant thrice differentiable function defined on `(-oo,oo)` such that `f(x)=f(6-x)a n df^(prime)(0)=0=f^(prime)(x)^2=f(5)dot` If `n` is the minimum number of roots of `(f^(prime)(x)^2+f^(prime)(x)f^(x)=0` in the interval [0,6], then the value of `n/2` is___

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a non-constant twice differentiable function defined on (oo, oo) such that f(x) = f(1-x) and f"(1/4) = 0 . Then

If y=f(x) is an odd differentiable function defined on (-oo,oo) such that f^(prime)(3)=-2,t h e n|f^(prime)(-3)| equals_________.

Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then (a) f^(prime)(x) vanishes at least twice on [0,1] (b) f^(prime)(1/2)=0 (c) int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 (d) int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt

Let f be a twice differentiable function such that f^(primeprime)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

Let f: RvecR be a one-one onto differentiable function, such that f(2)=1a n df^(prime)(2)=3. The find the value of ((d/(dx)(f^(-1)(x))))_(x=1)

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f(x) be differentiable function and g(x) be twice differentiable function. Zeros of f(x),g^(prime)(x) be a , b , respectively, (a

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x)a n dg(x) be two differentiable functions in Ra n df(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot