Home
Class 12
MATHS
Given g(x)=(x+2)/(x-1) and the line 3x+y...

Given `g(x)=(x+2)/(x-1)` and the line `3x+y-10=0.` Then the line is (a)tangent to `g(x)` (b) normal to `g(x)` (c)chord of `g(x)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+tanxa n df is the inverse of g, then g^(prime)(x) equals (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)-x]^2) (c) 1/(2+[g(x)-x]^2) (d) none of these

Given that f'(x) > g'(x) for all real x, and f(0)=g(0) . Then f(x) < g(x) for all x belong to (a) (0,oo) (b) (-oo,0) (c) (-oo,oo) (d) none of these

Let f(x)=x^(3)+x+1 and let g(x) be its inverse function then equation of the tangent to y=g(x) at x = 3 is

If g is the inverse function of fa n df^(prime)(x)=sinx ,t h e ng^(prime)(x) is (a) cos e c{g(x)} (b) "sin"{g(x)} (c) -1/("sin"{g(x)}) (d) none of these

Ifg(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, where n in N , g(x)+g(pi) (b) g(x)+g((npi)/(n2)) g(x)+g(pi/2) (d) none of these

If g(x)=max(y^(2)-xy)(0le yle1) , then the minimum value of g(x) (for real x) is

f(x)=(1+x) g(x)=(2x-1) Show that fo(g(x))=go(f(x))

f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)' must be

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x