Home
Class 12
MATHS
Show that tan^(-1)x > x/(1+(x^2)/3)ifx i...

Show that `tan^(-1)x > x/(1+(x^2)/3)ifx in (0,oo)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : tan (cos^(-1)x) = (sqrt(1-x^(2)))/x

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

Show that int_(0)^(1)tan ^(-1)x+tan^(-1)(1-x)dx=(pi)/(2)-log_(e)2

Show that int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)

If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0-pi/2,ifx<0