Home
Class 12
MATHS
If f:[0,oo[vecR is the function defined ...

If `f:[0,oo[vecR` is the function defined by `f(x)=(e^x^2-e^-x^2)/(e^x^2+e^-x^2),` then check whether `f(x)` is injective or not.

Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the function f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2 is given by

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

Let a function f be defined by f(x)=(x-|x|)/x for x ne 0 and f(0)=2. Then f is

Let f:R to R be defined by f(x) =e^(x)-e^(-x). Prove that f(x) is invertible. Also find the inverse function.

Integrate the functions (e^(x))/((1+e^(x))(2+e^(x)))

Integrate the functions (e^(x))/((1+e^(x))(2+e^(x)))

If f(x)=(log)_e((x^2+e)/(x^2+1)) , then the range of f(x)

Let a function f be defined by f (x) =[x-|x|]/x for xne 0 and f(0)=2 .Then f is :