Home
Class 12
MATHS
The roots of the equation are ∣ x C...

The roots of the equation are ∣ x C r x+1 ​ C r ​ x+2 ​ C r ​ ​ n−1 ​ C r ​ n ​ C r ​ n+1 ​ C r ​ ​ n−1 ​ C r−1 ​ n ​ C r−1 ​ n+1 ​ C r−1 ​∣ =0 are a. x=n, b. x=n+1, c. x=n-1, d. x=n-2.

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation |^x C_r^(n-1)C_r^(n-1)C_(r-1)^(x+1)C_r^n C_r^n C_(r-1)^(x+2)C_r^(n+1)C_r^(n+1)C_(r-1)|=0 are x=n b. x=n+1 c. x=n-1 d. x=n-2

Let |z_r-r|lt=r ,AAr=1,2,3,... ,n Then |sum_(r=1)^n Z_r| is less than a. n b. 2n c. n(n+1) d. (n(n+1))/2

The value of sum_(r=1)^n(-1)^(r+1)("^n C r)/(r+1) is equal to a. -1/(n+1) b. 1/n c. 1/(n+1) d. n/(n+1)

If ^n+1C_(r+1) : ^n C_r : ^(n-1)C_(r-1)=11 :6:3, then n r =

If ^n P_r=^n P_(r+1)a n d^n C_r=^n C_(r-1,) then the value of n+r is.

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

If |x^n x^(n+2)x^(2n)1x^a a x^(n+5)x^(a+6)x^(2n+5)|=0,AAx in R ,w h e r en in N , then value of a is n b. n-1 c. n+1 d. none of these

Prove that if 1 le r le n " then " n xx^((n-1))C_(r-1)= (n-r+1).^(n)C_(r-1)

Prove that combinatorial argument that ""^(n+1)C_r=^n C_r+^n C_(r-1)""

If .^(n)C_(r-1)=36, .^(n)C_(r)=84 and .^(n)C_(r+1)=126 , find n and r.