Home
Class 12
MATHS
if |f(x1)-f(x2)|<=(x1-x2)^2Find the equa...

if `|f(x_1)-f(x_2)|<=(x_1-x_2)^2`Find the equation of gent to the curve `y= f(x)` at the point `(1, 2).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_1+x)++1/(2^(n-1))cos(a_n+x) where a)1,a_2 a_n in Rdot If f(x_1)=f(x_2)=0,t h e n|x_2-x_1| may be equal to pi (b) 2pi (c) 3pi (d) pi/2

Let f(x)a n dg(x) be two continuous functions defined from RvecR , such that f(x_1)>f(x_2)a n dg(x_1) f(g(3alpha-4))

If f(x)=x^(2)-2 " then " f(x+1)-f(x-2) ............

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=x^3-x^2+100x+2002 ,t h e n f(1000)>f(1001) f(1/(2000))>f(1/(2001)) f(x-1)>f(x-2) f(2x-3)>f(2x)

Let f(x)=a^(x)(a gt 0) be written as f(x)=f_(1)(x)+f_(2)(x), " where " f_(1)(x) is an function and f_(2)(x) is an odd function. Then f_(1)(x+y)+f_(1)(x-y) equals

If f(x+1/2)+f(x-1/2)=f(x) for all x in R , then the period of f(x) is 1 (b) 2 (c) 3 (d) 4

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

Let f(x)=x/(1-x) and ' a ' be a real number. If x_0=a , x_1=f(x_0) , x_2=f(x_1) , x_3=f(x_2) and so on. If x_(2011)=- (1/2012) , then the value of reciprocal of ' a ' is

Let f(x)=f_1(x)-2f_2 (x) , where ,where f_1(x)={((min{x^2,|x|},|x|le 1),(max{x^2,|x|},|x| le 1)) and f_2(x)={((min{x^2,|x|},|x| lt 1),({x^2,|x|},|x| le 1)) and let g(x)={ ((min{f(t):-3letlex,-3 le x le 0}),(max{f(t):0 le t le x,0 le x le 3})) for -3 le x le -1 the range of g(x) is