Home
Class 12
MATHS
The abscissas of point Pa n dQ on the cu...

The abscissas of point `Pa n dQ` on the curve `y=e^x+e^(-x)` such that tangents at `Pa n dQ` make `60^0` with the x-axis are. `1n((sqrt(3)+sqrt(7))/7)a n d1n((sqrt(3)+sqrt(5))/2)` `1n((sqrt(3)+sqrt(7))/2)` (c) `1n((sqrt(7)-sqrt(3))/2)` `+-1n((sqrt(3)+sqrt(7))/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (a)(0,0) (b) (sqrt(3),-(sqrt(3))/2) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)

Simplify (1)/(3 - sqrt(8)) - (1)/(sqrt(8) - sqrt(7)) + (1)/(sqrt(7) - sqrt(6)) - (1)/(sqrt(6) - sqrt(5)) + (1)/(sqrt(5) - 2)

The sum up to n terms of the series 1/(sqrt(1) + sqrt(3)) + 1/(sqrt(3) + sqrt(5)) + 1/(sqrt(5) + sqrt(7)) +… is:

Which of the following is equal to root(3)(-1) a. (sqrt(3)+sqrt(-1))/2 b. (-sqrt(3)+sqrt(-1))/(sqrt(-4)) c. (sqrt(3)-sqrt(-1))/(sqrt(-4)) d. -sqrt(-1)

The sum of the first n terms of the series 1/(sqrt(2) + sqrt(5)) + 1/(sqrt(5) + sqrt(8)) + 1/(sqrt(8) + sqrt(11)) +... is

Find the sum of the first n terms of the series 1/(sqrt(2) + sqrt(3)) + 1/(sqrt(3) + sqrt(4)) +...

The sequence (1)/(sqrt(3)), (1)/(sqrt(3)+sqrt(2)), (1)/(sqrt(3) + 2 sqrt(2)) form an ........ .