Home
Class 12
MATHS
Show that the normal at any point θ to t...

Show that the normal at any point θ to the curve `x = a costheta + a theta sin theta, y = a sintheta – atheta costheta` is at a constant distance from the origin.

Promotional Banner

Similar Questions

Explore conceptually related problems

x = a(costheta + logtan(theta/2), y = asintheta, find dy/dx.

If sintheta +costheta =1 then sin^6 theta +cos^6 theta is:

Prove that (1-costheta +cos2theta )/(sin2theta -sintheta)=cottheta

If x = 2costheta- cos 2theta, y = 2sintheta -sin 2theta, find dy/dx.

Show that the equation of the normal to the curve x=a cos ^(3) theta, y=a sin ^(3) theta at 'theta ' is x cos theta -y sin theta =a cos 2 theta .

Prove that (sintheta +sin2theta)/(1+costheta +cos2theta)=tantheta

Find the slope of the normal to the curve x=a cos^(3) theta,y=a sin^(3) theta at theta=(pi)/(4) .

If x sin ^3 theta +y cos^3 theta = sin theta cos theta and x sin theta =y cos theta then x^2 +y^2 is