Home
Class 11
MATHS
Statement1: if n in Na n dn is not a m...

Statement1: if `n in Na n dn` is not a multiple of 3 and `(1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r ,` then the value of `sum_(r=0)^n(-1)^r a r^n C_r` is zero Statement 2: The coefficient of `x^n` in the expansion of `(1-x^3)^n` is zero, if `n=3k+1orn=3k+2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is

Find the sum sum_(r=0)^n^(n+r)C_r .

If (1+2x+x^2)^n=sum_(r=0)^(2n)a_r x^r ,then a= (^n C_2)^2 b. ^n C_rdot^n C_(r+1) c. ^2n C_r d. ^2n C_(r+1)

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .