Home
Class 11
MATHS
Degree of the polynomial [sqrt(x^2+1)+s...

Degree of the polynomial `[sqrt(x^2+1)+sqrt(x^2-1)]^8+[2/(sqrt(x^2+1)+sqrt(x^2-1))]^8` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+2)/(sqrt(x^(2)-1))

The expression (sqrt(2x^2+1)+sqrt(2x^2-1))^6+(2/((sqrt(2x^2+1)+sqrt(2x^2-1))^))^6 is polynomial of degree 6 b. 8 c. 10 d. 12

Find the degree of the polynomial 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-((1-sqrt(4x+1))/2)^7}

(sqrt(x)+(1)/(sqrt(x)))^(2)

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

(1)/(sqrt(x^(2) + 4x + 2 ))

Evaluate lim_(xto1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1)) if xgt1 .

Integrate (x^2 + 1) sqrt(x + 1)

Find the integrals of the following : 1/(sqrt((2+x)^2-1)) (ii) 1/(sqrt(x^2-4x+5)) (iii) 1/sqrt(9+8x-x^2)

(1)/(sqrt(9 + 8 x - x^(2)))