Home
Class 11
MATHS
If b1, b2 bn are the nth roots of unity,...

If `b_1, b_2 b_n` are the nth roots of unity, then prove that `^n C_1dotb_1+^n C_2dotb_2++^n C_ndotb_n=b_1/b_2{(1+b_2)^n-1}^dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that (^n C_0)/1+(^n C_2)/3+(^n C_4)/5+(^n C_6)/7+.....+dot=(2^n)/(n+1)dot

If tanthetaa n dsectheta are the roots of a x^2+b x+c=0, then prove that a^4=b^2(b^2-4ac)dot

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

If n >2, then prove that C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot

If a ,b ,a n dc are in G.P. then prove that 1/(a^2-b^2)+1/(b^2)=1/(b^2-c^2)dot

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

If f(x)=(a_1x+b_1)^2+(a_2x+b_2)^2+...+(a_n x+b_n)^2 , then prove that (a_1b_1+a_2b_2++a_n b_n)^2lt=(a1 2+a2 2++a n2)^(b1 2+b2 2++b n2)dot