Home
Class 11
MATHS
Let a=3^(1/(223))+1 and for all tgeq3, l...

Let `a=3^(1/(223))+1` and for all `tgeq3`, let ``
`f(n)=^n C_0dota^(n-1)-^n C_1dota^(n-2)+^n C_2dota^(n-3)-+(-1)^(n-1)dot^n C_(n-1)dota^0` . If the value of `f(2007)+f(2008)=3^k w h e r ek in N ,` then the value of `k` is.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

If ^n P_r=^n P_(r+1)a n d^n C_r=^n C_(r-1,) then the value of n+r is.

Let f(n)=sum_(k=1)^(n) k^2(n C_k)^ 2 then the value of f(5) equals

Let a=(2^(1//401)-1) and for each ngeq2,l e tb_n=^n C_1+^n C_2dota+^n C_3a^2+......+^n C_n*a^(n-1) . Find the value of (b_(2006)-b_(2005))dot

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If ""^(n)P_r = ""^(n)P_(r-1) and ""^(n)C_(r) = ""^(n)C_(r-1) , find the values of n and r.

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

The value of C(n, 0) - C(n, 1) + C(n, 2) - C(n, 3) +.......+(-1)^(n)C(n, n) =

Prove that (^n C_0)/1+(^n C_2)/3+(^n C_4)/5+(^n C_6)/7+.....+dot=(2^n)/(n+1)dot