Home
Class 11
MATHS
Prove that sum(r=1)^k(-3)^(r-1) ""^(3n)C...

Prove that `sum_(r=1)^k(-3)^(r-1) ""^(3n)C_(2r-1)=0,w h e r ek=3n//2` and`n` is an even integer.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=1)^n(-1)^(r-1)(1+1/2+1/3++1/r)^n C_r=1/n .

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove ""^(n)P_(r)=""^(n-1)P_(r) +r. ""^(n-1)P_(r-1)

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))