Home
Class 11
MATHS
If Cr stands for nCr, then the sum of ...

If `C_r` stands for `nC_r`, then the sum of the series `(2(n/2)!(n/2)!)/(n !)[C_0^2-2C_1^2+3C_2^2-........+(-1)^n(n+1)C_n^2]` ,where n is an even positive integer, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^k(-3)^(r-1)^(3n)C_(2r-1)=0,w h e r ek=3n//2 and n is an even integer.

Prove that C_0-2^2C_1+3^2C_2-4^2C_3+...+(-1)^n(n+1)^2xxC_n=0w h e r eC_r=^n C_r .

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

The value of C(n, 0) - C(n, 1) + C(n, 2) - C(n, 3) +.......+(-1)^(n)C(n, n) =

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is

The sum of series Sigma_(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

If n and r are two positive integers such that nger,"then "^(n)C_(r-1)+""^(n)C_(r)=

If n = 5, then (""^(n)C_(0))^(2)+(""^(n)C_(1))^(2)+(""^(n)C_(2))^(2)+......+(""^(n)C_(5))^(2) is equal to