Home
Class 11
MATHS
If coefficient of a^2 b^3 c^4 in(a+b+c)...

If coefficient of `a^2 b^3 c^4 in(a+b+c)^m` (where `n in N`) is `L(L != 0),` then in same expansion coefficient of `a^4b^4c^1` will be (A) `L` (B) `L/3` (C) `(mL)/4` (D) `L/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of a^3b^4c in the expansion of (1+a-b+c)^9dot

Find the coefficient of a^3b^4c^5 in the expansion of (b c+c a+a b)^6dot

In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be 4n b. 4n-3 c. 4n+1 d. none of these

In the expansion of (1+x+x^3+x^4)^10, the coefficient of x^4 is ^40 C_4 b. ^10 C_4 c. 210 d. 310

If a + b + c = 0 and a^(2) + b^(2) + c^(3) = 4, them find the value of a^(4) + b^(4) +c^(4) .

If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in A.P. (a ,b ,c >0), then the minimum value of a+b+c is (a) 1 (b) 3 (c) 5 (d) 9

Maximum sum of coefficient in the expansion of (1-xsintheta+x^2)^n is 1 b. 2^n c. 3^n d. 0

If a, b, c, l,m are in A.P, then the value of a-4b + 6c -4l +m is.

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

L_1a n dL_2 are two lines. If the reflection of L_1onL_2 and the reflection of L_2 on L_1 coincide, then the angle between the lines is (a) 30^0 (b) 60^0 (c) 45^0 (d) 90^0